Influence of silicon dioxide capping layers on pore characteristics in nanocrystalline silicon membranes.
نویسندگان
چکیده
Porous nanocrystalline silicon (pnc-Si) membranes are a new class of membrane material with promising applications in biological separations. Pores are formed in a silicon film sandwiched between nm thick silicon dioxide layers during rapid thermal annealing. Controlling pore size is critical in the size-dependent separation applications. In this work, we systematically studied the influence of the silicon dioxide capping layers on pnc-Si membranes. Even a single nm thick top oxide layer is enough to switch from agglomeration to pore formation after annealing. Both the pore size and porosity increase with the thickness of the top oxide, but quickly reach a plateau after 10 nm of oxide. The bottom oxide layer acts as a barrier layer to prevent the a-Si film from undergoing homo-epitaxial growth during annealing. Both the pore size and porosity decrease as the thickness of the bottom oxide layer increases to 100 nm. The decrease of the pore size and porosity is correlated with the increased roughness of the bottom oxide layer, which hinders nanocrystal nucleation and nanopore formation.
منابع مشابه
Influence of current density on refractive index of p-type nanocrystalline porous silicon
Porous Silicon (PS) layers have been prepared from p-type silicon wafers of (100) orientation. SEM, XRD, FTIR and PL studies were done to characterize the surface morphological and optical properties of PS. The porosity of the PS samples was determined using the parameters obtained from SEM images by geometric method. The refractive index values of the PS samples as a function of poros...
متن کاملInfluence of current density on refractive index of p-type nanocrystalline porous silicon
Porous Silicon (PS) layers have been prepared from p-type silicon wafers of (100) orientation. SEM, XRD, FTIR and PL studies were done to characterize the surface morphological and optical properties of PS. The porosity of the PS samples was determined using the parameters obtained from SEM images by geometric method. The refractive index values of the PS samples as a function of poros...
متن کاملHydrogen plasma treatment of silicon thin-film structures and nanostructured layers
The review concentrates on the analysis of the RF hydrogen plasma effect on thin-film metal-dioxide-silicon and silicon-dioxide silicon structures which are a modern basis of microand nanoelectronics. The especial attention is paid to athermic mechanisms of transformation of defects in dioxide, SiO2-Si interface and SiO2-Si nanocrystal ones and thin layers of silicon; atomic hydrogen influence ...
متن کاملStructural and optical properties of n- type porous silicon– effect of etching time
Porous silicon layers have been prepared from n-type silicon wafers of (100) orientation. SEM, FTIR and PL have been used to characterize the morphological and optical properties of porous silicon. The influence of varying etching time in the anodizing solution, on structural and optical properties of porous silicon has been investigated. It is observed that pore size increases with etching tim...
متن کاملMonte Carlo Simulation of Radiation effects in protection layers of logical cell of the digital gate in the FPGA for electron and proton rays Using the FLUKA Code
In this paper, radiation effects in protection layers of logical cell of the digital gate in the FPGA for electron and proton rays was simulated Using the FLUKA Code. by using of the Monte Carlo simulation, the electron and proton transport into the logical cell of the digital gate in the FPGA will be studied. In this simulation, the maximum energy of the electrons and protons at the entrance o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 26 5 شماره
صفحات -
تاریخ انتشار 2015